Skip to main content
Log in

General energy decay rates for a weakly damped Timoshenko system

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

In this paper, we consider the following Timoshenko-type system:

$$ \left\{ {\begin{array}{*{20}{c}} {{\varphi_{tt}} - {{\left( {{\varphi_x} + \psi } \right)}_x} = 0} \hfill & {{\text{in }}\left( {0,1} \right) \times {\mathbb{R}_{+} },} \hfill \\ {{\psi_{tt}} - {\psi_{xx}} + {\varphi_x} + \psi + \alpha (t)g{{\left( {{\psi_t}} \right)}} = 0} \hfill & {{\text{in }}\left( {0,1} \right) \times {\mathbb{R}_{+} }.} \hfill \\ \end{array} } \right. $$

We establish an explicit and general decay result, depending on g and α, using some properties of convex functions. We obtain our result without imposing any restrictive growth assumption on g at the origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Alabau-Boussouira, Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control. Nonlin. Differ. Equations Appl. 14 (2007), Nos. 5-6, 643–660.

    Article  MATH  MathSciNet  Google Scholar 

  2. _____, Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems. Appl. Math. Optim. 51 (2005), No. 1, 61–105.

    Article  MathSciNet  Google Scholar 

  3. F. Ammar-Khodja, A. Benabdallah, J. E. Muñoz Rivera, and R. Racke, Energy decay for Timoshenko systems of memory type. J. Differ. Equations 194 (2003), No. 1, 82–115.

    Article  MATH  Google Scholar 

  4. V. I. Arnold, Mathematical methods of classical mechanics. Springer-Verlag, New York (1989).

    Google Scholar 

  5. M. Cavalcanti, V. Cavalcanti, and I. Lasiecka, Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction. J. Differ. Equations 236 (2007), 407–459.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Guesmia and S. A. Messaoudi, On the control of solutions of a viscoelastic equation. Appl. Math. Comput. 206 (2008), No. 2, 589–597.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. U. Kim and Y. Renardy, Boundary control of the Timoshenko beam. SIAM J. Control Optim. 25 (1987), No. 6, 1417–1429.

    Article  MATH  MathSciNet  Google Scholar 

  8. I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equation with nonlinear boundary damping. Differ. Integral Equations 8, (1993), 507–533.

    MathSciNet  Google Scholar 

  9. I. Lasiecka and D. Toundykov, Energy decay rates for the semilinear wave equation with nonlinear localized damping and source terms. Nonlinear Anal. 64 (2006), 1757–1797.

    Article  MATH  MathSciNet  Google Scholar 

  10. _____, Regularity of higher energies of wave equation with nonlinear localized dampingand a nonlinear source. Nonlinear Anal. 69 (2008), 898–910.

    Article  MATH  MathSciNet  Google Scholar 

  11. K. Liu, Locally distributed control and damping for the conservative systems. SIAM J. Control Optim. 35 (1997), 1574–1590.

    Article  MATH  MathSciNet  Google Scholar 

  12. Z. Liu and S. Zheng, Semigroups associated with dissipative systems. Chapman & Hall/CRC (1999).

  13. W.-J. Liu and E. Zuazua, Deacy rates for dissipative wave equations. Ricerche Mat. 48 (1999), 61–75.

    MATH  MathSciNet  Google Scholar 

  14. P. Martinez, A new method to decay rate estimates for dissipative systems. ESAIM Control. Optim. Cal. Var. 4 (1999), 419–444.

    Article  MATH  Google Scholar 

  15. _____, A new method to obtain decay rate estimates for dissipative systems with localized damping. Rev. Mat. Complut. 12 (1999), No. 1, 251–283.

    MATH  MathSciNet  Google Scholar 

  16. S. A. Messaoudi and M. I. Mustafa, A stability result in a memory-type Timoshenko system. Dynam. Syst. Appl. (to appear).

  17. _____, On the internal and boundary stabilization of Timoshenko beams. Nonlin. Differ. Equations Appl. 15 (2008), 655–671.

    Article  MATH  MathSciNet  Google Scholar 

  18. _____, On the stabilization of the Timoshenko system by a weak nonlinear dissipation. Math. Meth. Appl. Sci. 32 (2009), 454–469.

    Article  MATH  MathSciNet  Google Scholar 

  19. S. A. Messaoudi and A. Soufyane, Boundary stabilization of a nonlinear system of Timoshenko type. Nonlinear Anal. 67 (2007), 2107-2112.

    Article  MATH  MathSciNet  Google Scholar 

  20. J. E. Muñoz Rivera and R. Racke, Global stability for damped Timoshenko systems. Discr. Cont. Dyn. Syst. 9 (2003), No. 6, 1625–1639.

    Article  MATH  Google Scholar 

  21. _____, Mildly dissipative nonlinear Timoshenko systems-global existence and exponential stability. J. Math. Anal. Appl. 276 (2002), 248–276.

    Article  MATH  MathSciNet  Google Scholar 

  22. _____, Timoshenko systems with indefinite damping. J. Math. Anal. Appl. 341 (2008), 1068–1083.

    Article  MATH  MathSciNet  Google Scholar 

  23. C. A. Raposo, J. Ferreira, M. L. Santos, and N. N. O. Castro, Expoenetial stability for the Timoshenko system with two weak dampings. Appl. Math. Lett. 18 (2005), 535–541.

    Article  MATH  MathSciNet  Google Scholar 

  24. M. Santos, Decay rates for solutions of a Timoshenko system with a memory condition at the boundary. Abstr. Appl. Anal. 7 (2002), No. 10, 531–546.

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Soufyane and A. Wehbe, Uniform stabilization for the Timoshenko beam by a locally distributed damping. Electr. J. Differ. Equations 29 (2003), 1–14.

    MathSciNet  Google Scholar 

  26. S. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos. Mag. 41 (1921), 744–746.

    Google Scholar 

  27. Q.-X. Yan, Boundary stabilization of Timoshenko beam. Syst. Sci. Math. Sci. 13 (2000), No. 4, 376–384.

    MATH  Google Scholar 

  28. Q.-X. Yan, Z. Chen, and D.-X. Feng, Exponential stability of nonuniform Timoshenko beam with coupled locally distributed feedbacks. Acta Anal. Funct. Appl. 5 (2003), No. 2, 156–164.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Mustafa.

Additional information

The authors thank PSU for its support. This work was partially supported by PSU under (project code IBRP-MATH-2008-12-10).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mustafa, M.I., Messaoudi, S.A. General energy decay rates for a weakly damped Timoshenko system. J Dyn Control Syst 16, 211–226 (2010). https://doi.org/10.1007/s10883-010-9090-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-010-9090-z

Key words and phrases

2000 Mathematics Subject Classification

Navigation